• Matematyka w deep learningu. Co musisz wiedzieć, aby zrozumieć sieci neuronowe

Autor Ronald T. Kneusel
Data wydania 2024-11-07
Format 16,5x22,8
Oprawa miękka
Stron 344
Wydawca Helion
Wydanie 1
72.31
szt. Do przechowalni
Program lojalnościowy dostępny jest tylko dla zalogowanych klientów.
Wysyłka w ciągu 24 - 48 godzin
Cena przesyłki 15
Odbiór osobisty 0
Paczkomaty InPost 15
Kurier DPD 17
Kurier DPD(Pobranie) 19
Dostępność 3 szt.
ISBN 978-83-289-1016-4
EAN 9788328910164
Uczenie maszynowe niesie ze sobą obietnicę niezwykłych wynalazków: od samochodów autonomicznych po systemy medyczne diagnozujące choroby lepiej niż doświadczeni lekarze, ale także daje pole do rozwijania dziesiątków innych mniej lub bardziej niepokojących innowacji. Dziś do budowania systemów uczenia maszynowego można posłużyć się wygodnymi frameworkami, jednak rzeczywiste zrozumienie uczenia głębokiego wymaga znajomości kilku koncepcji matematycznych.

Koncepcje te zostały przystępnie wyjaśnione właśnie w tej książce. W szczególności zapoznasz się z praktycznymi aspektami probabilistyki, statystyki, algebry liniowej i rachunku różniczkowego. Prezentacji tych zagadnień towarzyszą fragmenty kodu w Pythonie i praktyczne przykłady zastosowań w uczeniu głębokim. Rozpoczniesz od zapoznania się z podstawami, takimi jak twierdzenie Bayesa, a następnie przejdziesz do bardziej zaawansowanych zagadnień, w tym uczenia sieci neuronowych przy użyciu wektorów, macierzy i pochodnych. Dwa ostatnie rozdziały dadzą Ci szansę użycia nowej wiedzy do zaimplementowania propagacji wstecznej i metody gradientu prostego - dwóch podstawowych algorytmów napędzających rozwój sztucznej inteligencji.
Nie ma jeszcze komentarzy ani ocen dla tego produktu.
Podpis
E-mail
Zadaj pytanie
  • Producenci